ENPHASE®

13 JUNE 2023 Maidstone, Kent 2:30pm

First Responder Safe Response for Solar + Energy Storage Systems (ESS)

Presented by:

Captain Richard Birt, (Ret)

Las Vegas Fire & Rescue.

Agenda

We will cover:

- Residential solar and battery storage equipment fundamentals
- Industry standard installation procedures
- Suppression and ventilation tactics
- How to design an incident action plan to safely respond to these technologies

We will practice:

- Identifying key risks and shutoffs to control utilities safely
- Resolving dynamic scenarios that involve solar and/or battery storage equipment

By the end of the class, you will be able to design an incident action plan with strategies & tactics to be prepared for fires that involve residential solar and battery storage devices.

Enphase Energy

Practical Example of Electricity

Power (kW) = Voltage x Current

- **Voltage** (electrical potential) is represented by the height of the water making potential for flow
- Current is the flow of water through the pipe

Energized Circuits

- The water doesn't flow until the pipe is connected to the tower (completing the circuit)
- The water, like electricity, will find the path of least resistance
- Don't let your body be the pipe!

Enphase Energy

Solar Equipment

Solar Panels: Generates DC electricity at ~37 volts/panel & up to 600 volts for the system

Solar Inverters: Converts DC electricity to 230 volts AC connected to the electrical panel

Electrical Panels: Distribution point for 230 V home circuits, connected to the utility

DC input: 60V

AC output: 230V

Rapid shutdown on PV module: YES

DC input: 600V AC output: 230V

Rapid shutdown on PV module: NO

How to Control Electrical Utilities Safely on a working fire

The way the fire service has been doing this for the last 100 years has changed with the introduction of solar and batteries.

Battery Cells

Tesla nominal cell voltage: 3.6 Volts

Enphase nominal cell voltage: 3.2 Volts

LG nominal cell voltage: 3.7 Volts

Enphase Energy

Battery Chemistry

	LG CHEM	Enphase IQ Battery	TESLA Powerwall
Battery Chemistry	Lithium Nickel Manganese Cobalt Oxide	Lithium Iron Phosphate	Lithium Nickel Cobalt Aluminum Oxide
Thermal Runaway Temperature	210°C	270°C	150°C
Products of Combustion	Carbon Monoxide (CO) & Hydrogen (H)	Carbon Monoxide (CO) & Hydrogen (H)	Carbon Monoxide (CO) & Hydrogen (H)

Tests have shown that battery cells start degrading at as low as 93°C. At this temperature, there is the potential to off-gas hydrogen and carbon monoxide which can create an explosive atmosphere in a contained area. **Ventilation is key!**

ENPHASE

Let's get started - together!